May kaugnayan sa coin
Price calculator
Kasaysayan ng presyo
Paghula ng presyo
Teknikal na pagsusuri
Gabay sa pagbili ng coin
kategorya ng Crypto
Profit calculator
Drift presyoDRIFT
Listed
BumiliQuote pera:
USD
Ano ang nararamdaman mo tungkol sa Drift ngayon?
MabutiBad
Tandaan: Ang impormasyong ito ay para sa sanggunian lamang.
Presyo ng Drift ngayon
Ang live na presyo ng Drift ay $1.2 bawat (DRIFT / USD) ngayon na may kasalukuyang market cap na $328.80M USD. Ang 24 na oras na dami ng trading ay $30.88M USD. Ang presyong DRIFT hanggang USD ay ina-update sa real time. Ang Drift ay 5.12% sa nakalipas na 24 na oras. Mayroon itong umiikot na supply ng 273,751,900 .
Ano ang pinakamataas na presyo ng DRIFT?
Ang DRIFT ay may all-time high (ATH) na $2.65, na naitala noong 2024-11-09.
Ano ang pinakamababang presyo ng DRIFT?
Ang DRIFT ay may all-time low (ATL) na $0.1000, na naitala noong 2024-05-16.
Bitcoin price prediction
Kailan magandang oras para bumili ng DRIFT? Dapat ba akong bumili o magbenta ng DRIFT ngayon?
Kapag nagpapasya kung buy o mag sell ng DRIFT, kailangan mo munang isaalang-alang ang iyong sariling diskarte sa pag-trading. Magiiba din ang aktibidad ng pangangalakal ng mga long-term traders at short-term traders. Ang Bitget DRIFT teknikal na pagsusuri ay maaaring magbigay sa iyo ng sanggunian para sa trading.
Ayon sa DRIFT 4 na teknikal na pagsusuri, ang signal ng kalakalan ay Neutral.
Ayon sa DRIFT 1d teknikal na pagsusuri, ang signal ng kalakalan ay Neutral.
Ayon sa DRIFT 1w teknikal na pagsusuri, ang signal ng kalakalan ay Buy.
Ano ang magiging presyo ng DRIFT sa 2026?
Batay sa makasaysayang modelo ng hula sa pagganap ng presyo ni DRIFT, ang presyo ng DRIFT ay inaasahang aabot sa $1.15 sa 2026.
Ano ang magiging presyo ng DRIFT sa 2031?
Sa 2031, ang presyo ng DRIFT ay inaasahang tataas ng +45.00%. Sa pagtatapos ng 2031, ang presyo ng DRIFT ay inaasahang aabot sa $2.66, na may pinagsama-samang ROI na +131.21%.
Drift price history (USD)
The price of Drift is +1103.87% over the last year. The highest price of DRIFT in USD in the last year was $2.65 and the lowest price of DRIFT in USD in the last year was $0.1000.
TimePrice change (%)Lowest priceHighest price
24h+5.12%$1.13$1.21
7d-13.21%$1.11$1.47
30d-6.47%$0.8791$1.54
90d+143.78%$0.3822$2.65
1y+1103.87%$0.1000$2.65
All-time+1103.87%$0.1000(2024-05-16, 241 araw ang nakalipas )$2.65(2024-11-09, 64 araw ang nakalipas )
Drift impormasyon sa merkado
Drift's market cap history
Market cap
$328,800,793.19
+5.12%
Ganap na diluted market cap
$1,201,090,473.16
+5.12%
Volume (24h)
$30,876,608.63
-32.75%
Mga ranggo sa merkado
Rate ng sirkulasyon
27.00%
24h volume / market cap
9.39%
Umiikot na Supply
273,751,900 DRIFT
Kabuuang supply / Max supply
1,000,000,000 DRIFT
-- DRIFT
Drift market
Drift holdings by concentration
Whales
Investors
Retail
Drift addresses by time held
Holders
Cruisers
Traders
Live coinInfo.name (12) price chart
Drift na mga rating
Mga average na rating mula sa komunidad
4.6
Ang nilalamang ito ay para sa mga layuning pang-impormasyon lamang.
DRIFT sa lokal na pera
1 DRIFT To MXN$24.881 DRIFT To GTQQ9.311 DRIFT To CLP$1,212.431 DRIFT To HNLL30.681 DRIFT To UGXSh4,460.521 DRIFT To ZARR22.961 DRIFT To TNDد.ت3.871 DRIFT To IQDع.د1,580.341 DRIFT To TWDNT$39.771 DRIFT To RSDдин.137.141 DRIFT To DOP$73.681 DRIFT To MYRRM5.41 DRIFT To GEL₾3.391 DRIFT To UYU$52.481 DRIFT To MADد.م.12.121 DRIFT To AZN₼2.041 DRIFT To OMRر.ع.0.461 DRIFT To SEKkr13.471 DRIFT To KESSh155.461 DRIFT To UAH₴51.02
- 1
- 2
- 3
- 4
- 5
Huling na-update 2025-01-11 22:29:42(UTC+0)
Paano Bumili ng Drift(DRIFT)
Lumikha ng Iyong Libreng Bitget Account
Mag-sign up sa Bitget gamit ang iyong email address/mobile phone number at gumawa ng malakas na password para ma-secure ang iyong account.
Beripikahin ang iyong account
I-verify ang iyong pagkakakilanlan sa pamamagitan ng paglalagay ng iyong personal na impormasyon at pag-upload ng wastong photo ID.
Bumili ng Drift (DRIFT)
Gumamit ng iba't ibang mga pagpipilian sa pagbabayad upang bumili ng Drift sa Bitget. Ipapakita namin sa iyo kung paano.
Matuto paI-trade ang DRIFT panghabang-buhay na hinaharap
Pagkatapos ng matagumpay na pag-sign up sa Bitget at bumili ng USDT o DRIFT na mga token, maaari kang magsimulang mag-trading ng mga derivatives, kabilang ang DRIFT futures at margin trading upang madagdagan ang iyong inccome.
Ang kasalukuyang presyo ng DRIFT ay $1.2, na may 24h na pagbabago sa presyo ng +5.12%. Maaaring kumita ang mga trader sa pamamagitan ng alinman sa pagtagal o pagkukulang saDRIFT futures.
Sumali sa DRIFT copy trading sa pamamagitan ng pagsunod sa mga elite na traders.
Pagkatapos mag-sign up sa Bitget at matagumpay na bumili ng mga token ng USDT o DRIFT, maaari ka ring magsimula ng copy trading sa pamamagitan ng pagsunod sa mga elite na traders.
Buy more
Ang mga tao ay nagtatanong din tungkol sa presyo ng Drift.
Ano ang kasalukuyang presyo ng Drift?
The live price of Drift is $1.2 per (DRIFT/USD) with a current market cap of $328,800,793.19 USD. Drift's value undergoes frequent fluctuations due to the continuous 24/7 activity in the crypto market. Drift's current price in real-time and its historical data is available on Bitget.
Ano ang 24 na oras na dami ng trading ng Drift?
Sa nakalipas na 24 na oras, ang dami ng trading ng Drift ay $30.88M.
Ano ang all-time high ng Drift?
Ang all-time high ng Drift ay $2.65. Ang pinakamataas na presyong ito sa lahat ng oras ay ang pinakamataas na presyo para sa Drift mula noong inilunsad ito.
Maaari ba akong bumili ng Drift sa Bitget?
Oo, ang Drift ay kasalukuyang magagamit sa sentralisadong palitan ng Bitget. Para sa mas detalyadong mga tagubilin, tingnan ang aming kapaki-pakinabang na gabay na Paano bumili ng Drift protocol .
Maaari ba akong makakuha ng matatag na kita mula sa investing sa Drift?
Siyempre, nagbibigay ang Bitget ng estratehikong platform ng trading, na may mga matatalinong bot sa pangangalakal upang i-automate ang iyong mga pangangalakal at kumita ng kita.
Saan ako makakabili ng Drift na may pinakamababang bayad?
Ikinalulugod naming ipahayag na ang estratehikong platform ng trading ay magagamit na ngayon sa Bitget exchange. Nag-ooffer ang Bitget ng nangunguna sa industriya ng mga trading fee at depth upang matiyak ang kumikitang pamumuhunan para sa mga trader.
Saan ako makakabili ng Drift (DRIFT)?
Video section — quick verification, quick trading
How to complete identity verification on Bitget and protect yourself from fraud
1. Log in to your Bitget account.
2. If you're new to Bitget, watch our tutorial on how to create an account.
3. Hover over your profile icon, click on “Unverified”, and hit “Verify”.
4. Choose your issuing country or region and ID type, and follow the instructions.
5. Select “Mobile Verification” or “PC” based on your preference.
6. Enter your details, submit a copy of your ID, and take a selfie.
7. Submit your application, and voila, you've completed identity verification!
Ang mga investment sa Cryptocurrency, kabilang ang pagbili ng Drift online sa pamamagitan ng Bitget, ay napapailalim sa market risk. Nagbibigay ang Bitget ng madali at convenient paraan para makabili ka ng Drift, at sinusubukan namin ang aming makakaya upang ganap na ipaalam sa aming mga user ang tungkol sa bawat cryptocurrency na i-eooffer namin sa exchange. Gayunpaman, hindi kami mananagot para sa mga resulta na maaaring lumabas mula sa iyong pagbili ng Drift. Ang page na ito at anumang impormasyong kasama ay hindi isang pag-endorso ng anumang partikular na cryptocurrency.
Bitget Insights
BGUSER-SX0MCXKN
2d
Maitland of Al
The term "Maitland" is not a widely recognized term in the field of Artificial Intelligence (AI). However, I can provide some information on the concept of "maintland" or "maintenance land" in the context of AI.
In AI, maintenance land refers to the process of maintaining and updating AI systems to ensure they continue to function effectively and efficiently over time. This can include tasks such as:
1. _Data maintenance_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date.
2. _Model maintenance_: Updating AI models to reflect changes in the underlying data or to improve their performance.
3. _Software maintenance_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.
Importance of Maitland in AI
The concept of maitland is important in AI because it ensures that AI systems continue to function effectively and efficiently over time. This can help to:
1. _Improve performance_: Regular maintenance can help to improve the performance of AI systems by ensuring that they are using the most up-to-date data and models.
2. _Reduce errors_: Maintenance can help to reduce errors and improve the accuracy of AI systems by ensuring that they are functioning correctly.
3. _Enhance security_: Maintenance can help to enhance the security of AI systems by ensuring that they are protected from cyber threats and that any vulnerabilities are patched.
4. _Increase trust_: Maintenance can help to increase trust in AI systems by ensuring that they are transparent, explainable, and fair.
Challenges of Maitland in AI
The challenges of maitland in AI include:
1. _Data quality_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date can be a challenge.
2. _Model drift_: AI models can drift over time, which can affect their performance and accuracy.
3. _Software updates_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure can be a challenge.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system can be a challenge.
Best Practices for Maitland in AI
The best practices for maitland in AI include:
1. _Regular maintenance_: Regular maintenance is essential to ensure that AI systems continue to function effectively and efficiently over time.
2. _Data quality checks_: Data quality checks should be performed regularly to ensure that the data used to train and test AI models is accurate, complete, and up-to-date.
3. _Model monitoring_: AI models should be monitored regularly to ensure that they are performing as expected and to detect any drift or degradation.
4. _Software updates_: Software updates should be performed regularly to ensure that the software used to deploy and manage AI systems is up-to-date and secure.
5. _Hardware maintenance_: Hardware maintenance should be performed regularly to ensure that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.$AL
AL0.00%
CYBER0.00%
Crypto-Paris
2024/12/27 14:52
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
1. Integrieren des Modells in den
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
1. Integrieren des Modells in den Workflow
2. Bereitstellung der Ergebnisse für Benutzer/Entwickler
3. Konfiguration der Modellumgebung
Überwachung
1. *Modellleistung*: Überwachen von Genauigkeit und Leistung
2. *Data-Drift*: Erkennen von Datenveränderungen
3. *Modell-Degradation*: Überwachen der Modellleistung über die Zeit
4. *Benutzerfeedback*: Sammeln von Feedback für Verbesserungen
Erfolgskriterien
1. *Modellleistung*: Erforderliche Genauigkeit und Leistung erreicht
2. *Benutzerzufriedenheit*: Benutzer zufrieden mit Ergebnissen
3. *Stabilität*: Modell bleibt stabil und funktioniert ordnungsgemäß
Tools für Deploying und Überwachung
1. TensorFlow Serving
2. AWS SageMaker
3. Azure Machine Learning
4. Google Cloud AI Platform
5. Prometheus und Grafana für Überwachung
Best Practices
1. Kontinuierliche Integration und -lieferung
2. Automatisierte Tests
3. regelmäßige Überwachung und Analyse
4. Dokumentation und Kommunikation
5. kontinuierliche Verbesserung und Optimierung
CLOUD0.00%
DRIFT0.00%
Kylian-mbappe
2024/12/27 14:25
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
Das Deploying ist der letzte Schr
Deploying und Überwachung von Machine-Learning-Modellen
Deploying
Das Deploying ist der letzte Schritt eines Data-Analytics-Projekts. Hier werden die Machine-Learning-Modelle in den tatsächlichen Workflow integriert und die Ergebnisse für Benutzer oder Entwickler zugänglich gemacht.
Überwachung
Nach dem Deploying wird die Leistung des Modells überwacht, um Veränderungen wie Data-Drift oder Modell-Degradation zu erkennen. Wenn alles ordnungsgemäß funktioniert, kann das Projekt als erfolgreich betrachtet werden.
Schritte der Überwachung
1. *Modellleistung*: Überwachen der Modellleistung und -genauigkeit.
2. *Data-Drift*: Erkennen von Veränderungen in den Daten, die das Modell beeinflussen könnten.
3. *Modell-Degradation*: Überwachen der Modellleistung über die Zeit, um Degradation zu erkennen.
4. *Benutzerfeedback*: Sammeln von Feedback von Benutzern, um das Modell zu verbessern.
Erfolgskriterien
1. *Modellleistung*: Das Modell erreicht die erforderliche Genauigkeit und Leistung.
2. *Benutzerzufriedenheit*: Die Benutzer sind mit den Ergebnissen des Modells zufrieden.
3. *Stabilität*: Das Modell bleibt stabil und funktioniert ordnungsgemäß über die Zeit.
DRIFT0.00%
Sanam_Baloch
2024/12/27 14:07
The final stage of a data analytics project: deployment and monitoring. This is where the rubber meets the road, and the machine learning models are put into action.
During this stage, the analysts integrate the models into the actual workflow, making the outcomes available to users or developers. This is a critical step, as it ensures that the insights and predictions generated by the models are actionable and can drive business decisions.
Once the model is deployed, the analysts closely monitor its performance, watching for any changes that could impact its accuracy or effectiveness. This includes:
1. *Data drift*: Changes in the underlying data distribution that could affect the model's performance.
2. *Model degradation*: Decreases in the model's accuracy or performance over time.
3. *Concept drift*: Changes in the underlying relationships between variables that could impact the model's performance.
By monitoring the model's performance and addressing any issues that arise, the analysts can ensure that the project remains successful and continues to deliver value to the organization.
Some key activities during this stage include:
1. *Model serving*: Deploying the model in a production-ready environment.
2. *Monitoring and logging*: Tracking the model's performance and logging any issues or errors.
3. *Model maintenance*: Updating or retraining the model as needed to maintain its performance.
4. *Feedback loops*: Establishing processes to collect feedback from users or stakeholders and incorporating it into the model's development.
By following these steps, analysts can ensure that their data analytics project is not only successful but also sustainable and adaptable to changing business needs.
DRIFT0.00%
BGUSER-AEJ9PSGU
2024/12/27 13:58
Model Deployment and Monitoring
This is the last stage of a data analytics project. Here, analysts put the machine learning models into the actual workflow and make the outcomes available to users or developers. Once the model is deployed, they observe its performance for changes, like data drift, model degradation, etc. If everything appears operational, the project can be deemed successful.
DRIFT0.00%
Mga kaugnay na asset
Mga sikat na cryptocurrencies
Isang seleksyon ng nangungunang 8 cryptocurrencies ayon sa market cap.
Kamakailang idinagdag
Ang pinakahuling idinagdag na cryptocurrency.
Maihahambing na market cap
Sa lahat ng asset ng Bitget, ang 8 na ito ang pinakamalapit sa Drift sa market cap.